Number

PreK HLC

Understanding of number values and sequences to $\mathbf{1 0}$ (counting, cardinality, conservation, and stable order)

 1:1 CorrespondenceSeptember
PreK Learning Progressions
Students must use models to build understanding of the HLC and interact with a variety of contexts.
Rote Oral Count Sequence (rote counting from 1; rote counting from any start number)

Counts Forward (FWD) from 1 to 5	Counts FWD 1 to 10
one, two, three, four, five	one, two, three, four, five, six, seven, eight, nine, ten

Counts Backward (BWD) from 3	Counts BWD from 5	Counts BWD from 10
three, two, one	five, four, three, two, one ten, nine, eight, seven, six, five, four, three, two, one	

$\because \bullet$
$\because \because \because \cdot$
PreK HLC Learning Progressions

Subitizing (immediate recognition of quantity - five frames, fingers, regular dot patterns, irregular dot patterns)

| Perceptually subitizes regular patterns within 5
 (Immediate recognition of quantity) | Perceptually subitizes irregular patterns within 5
 (immediate recognition of quantity) |
| :---: | :---: | :---: |
| Example quick images to support subitizing regular patterns | Example quick images to support subitizing irregular patterns |

Symbolic Notation

Identifies numerals within 5

Count Objects to Determine Cardinality (cardinality demonstrates understanding that the last number in the count is the quantity) Students are given amounts of discrete objects to determine the total quantity. All of the skills noted below are observable during a Counting Collection. Each understanding might develop at different times for each number range.

Ordering \& Magnitude

For various quantities, students may compare by subitizing, matching ($7: 1$) lining items up, or counting quantities. This concept is also impacted by conservation of number - consistent count regardless of orientation ("It is still 4 , the cubes are just spread out").

Number

Kindergarten HLC

Understanding of number values and sequences to $\mathbf{2 0}$ (counting, cardinality, and stable order) 1:1 Correspondence Comparing quantities

September
Kindergarten Learning Progressions
Students must use models to build understanding of the HLC and interact with a variety of contexts.

Rote Oral Count Sequence

Subitizing (immediate recognition of quantity - five and ten frames, fingers, regular dot patterns, irregular dot patterns)

Symbolic Notation Reversals in numeral formation are expected at this developmental stage, but transpositions (eg., 71 for 17) are an indicator of a misconception and may interfere with representing quantities.

Count Objects to Determine Cardinality (cardinality demonstrates understanding that the last number in the count is the quantity)
Students are given amounts of discrete objects to determine the total quantity. All of the skills noted below are observable during a Counting Collection. Each understanding might develop at different times for each number range.

Counts objects within 5	Counts objects within 10	Counts objects within 20
The following understandings develop at different times for each number range:		
$-1: 1$ correspondence (each item gets one count)		
-Organizing (keep track of what's been counted and what still needs to be counted without prompting)		
-Tracking methods (the actual gesture of touching and counting)		
-Stable order (correct number word sequence)		
-Cardinality (last number in the count is the quantity)		
-Conservation of number (quantity is the same regardless of arrangement - ex: objects lined up, then spread out, organized by 10 or not organized)		

Ordering \& Magnitude

For various quantities, students may compare by subitizing, matching ($7: 1$) lining items up, or counting quantities. This concept is also impacted by conservation of number - consistent count regardless of orientation ("It is still 4 , the cubes are just spread out").
Compares quantities within 5

Five fingers are more than two
fingers.

Two fingers are fewer than

Additive Reasoning

Grade One HLC

Understanding of number values and sequences to $\mathbf{1 2 0}$ (cross century, cross decade)
Understanding place value when adding and subtracting numbers within 100 (in context and in equations)

September

Grade One Learning Progressions

June
Students must use models to build understanding of the HLC and interact with a variety of contexts.
Rote Oral Count Sequence Teachers need to purposefully choose a variety of number ranges including opportunities to practice teen numbers, crossing decades, and centuries. This information is often best collected in student interviews checking on clusters of 5 numbers at various starting points.

Counts Forward (FWD) and Backward (BWD) within the range 1-30 starting at any number

Counts FWD and BWD within the range $\mathbf{1 - 5 0}$ starting at any number

Counts FWD and BWD within the range 1-100 starting at any number

Skip counts by 10s FWD and BWD within the range 1-100 on decade.

Counts FWD and BWD within the range $\mathbf{1 - 1 2 0}$ starting at any number

Skip counts by 10s FWD and BWD within the range 1-120 starting at any number.

Subitizing (immediate recognition of quantity - ten and twenty frames, fingers, regular dot patterns)

Conceptual subitizing within 20 (quickly composing greater quantities by seeing and combining smaller parts and using groups of ten) This connects to an understanding of part/part/total and/or decomposing and recomposing.
Examples of quick
Emages to support
conceptual subitizing

Symbolic Notation Reversals in numeral formation are expected at this developmental stage, but transpositions (eg., 71 for 17) are an indicator of a misconception and may interfere with representing quantities.

Identifies and writes numerals within 20
Identifies and writes numerals within 100

Counting Collections to Build Place Value Understanding

Students must use models to build understanding along this trajectory and interact with a variety of contexts for counting. Models should support students developing understanding of the magnitude of digits in their place values. Students are given amounts of discrete objects to determine the total quantity. All of the skills noted below are observable during a Counting Collection. Each understanding might develop at different times for each number range. Students must use models to build understanding of unitizing: $\mathbf{1 0}$ ones $\mathbf{= 1}$ ten; $\mathbf{1 0}$ tens =1 hundred.

Grade One HLC Learning Progressions
$\because \because$

Ordering \& Magnitude

Compares quantities within 20 by using items or visuals - using perception and/or counting	Compares quantities within 100 by using models - using references to counting or how many more/less or by using place value	Compares quantities within 120 by using models - using place value language, including knowledge of tens and ones
	65 is greater than 56. 65 has 1 more ten frame.	

Orders numerals, sequential and nonsequential, within 100

Orders numerals, sequential and nonsequential, within 120

Orders numerals, sequential and nonsequential, within 20

Operations: Addition and Subtraction students must use models to build understanding along this trajectory and interact with a variety of contexts for addition and subtraction. Models should support students developing understanding of the magnitude of digits in their place values.

Composition, Decomposition students must use models to build understanding and flexibility when composing and decomposing quantities.

Properties of Addition These properties are investigated throughout the year with different numbers and problem situations. The sequence of how the properties appear below does not suggest the order in which to explore them. Many times the properties can be explored simultaneously with student work.
Commutative Property

Grade One HLC Learning Progressions
$\because \because \because \cdot$
Place Value - Building Understanding Students must use models to build understanding along this trajectory and interact with a variety of contexts for addition and subtraction. Models should support students developing understanding of the magnitude of digits in their place values.

Use Place Value to compose, decompose and recompose

Decompose both numbers to add and subtract, decompose one number to add and subtract, recompose like units, missing addend, compensation There is an explicit connection between counting and addition (i.e. counting 10 more is the same as adding 10, counting back 10 is the same as subtracting 10).

Models \& Strategies for Addition

ALL LEARNERS NETWORK
Grade One HLC Learning Progressions

Models \& Strategies for Subtraction

Strategies

Additive Reasoning

Grade Two HLC

Use place value understanding to add and subtract numbers accurately, flexibly, efficiently, and strategically within 1,000 (in context and in equations) (NO standard algorithm)

September

Grade Two Learning Progressions

Students must use models to build understanding of the HLC and interact with a variety of contexts.

Rote Oral Count Sequence (rote counting from 1; rote counting from any start number)

Teachers need to purposefully choose a variety of number ranges including opportunities to practice teen numbers, crossing decades, and centuries. This information is often best collected in student interviews checking on clusters of 5 numbers at various starting points.

Counts Forward (FWD) and Backward (BWD) within the range 1-120 starting at any number	Counts FWD and BWD within the range 1-220 starting at any number	Counts FWD and BWD within the range 1-500 starting at any number	Counts FWD and BWD within the range $\mathbf{1 - 1 0 0 0}$ starting at any number
Skip counts FWD and BWD by 10s starting at any number within the range 1-120	Skip counts FWD and BWD by 10s on decade within the range 1-1000	Skip counts FWD and BWD by 10s starting at any number within the range 1-500	Skip counts FWD and BWD by 10s starting at any number within the range 1-1000
Skip counts FWD and BWD by 100s sta the range 1-1000	on century within	Skip counts FWD and BWD by 100s starting at any number within the range 1-1000	

Ordering \& Magnitude

| Uses place value understanding to compare 2-digit numbers. | Uses place value understanding to compare 3-digit numbers. |
| :--- | :--- | :--- | :--- |
| 65 is greater than 56.65 has 1 more ten. | |

Grade Two HLC Learning Progressions

Operations: Addition and Subtraction Students must use models to build understanding along this trajectory and interact with a variety of contexts for addition and subtraction. Models should support students developing understanding of the magnitude of digits in their place values.

Composition, Decomposition Students must use models to build understanding and flexibility when composing and decomposing quantities. Students must use models to build understanding of unitizing: 10 ones $=1$ ten; 10 tens $=1$ hundred, etc. as well as equivalent representations of a specific quantity

Properties of Addition These properties are investigated throughout the year with different numbers and problem situations. The sequence of how the properties appear below does not suggest the order in which to explore them. Many times the properties can be explored simultaneously with student work.

Place Value - Building Understanding Students must use models to build understanding along this trajectory and interact with a variety of contexts for addition and subtraction. Models should support students developing understanding of the magnitude of digits in their place values.

This section continued on next page.
$\because \because \because \cdot$
Grade Two HLC Learning Progressions

Place Value - Building Understanding (cont.)

Models the number 10 more/10 less from any number within 120	Models the number 10 more/10 less from any number within 220	Models the number 10 more/10 less from any number within 500	Models the number 10 more/10 less from any number within 1000
		 321 is ten less than 331. 331 is ten more than 321.	
	Models the number 100 more/100 less from any century within 1000	Models the number 100 more/100 less from any number within 500	Models the number 100 more and 100 less from any number within 1000
		312 is one hundred more than 212 and a hundred less than 412.	$\begin{gathered} 653+100=753 \\ \text { and } \\ 753-100=653 \end{gathered}$

$\because \because \because$

Developing and Extending Fact Fluency

Students use relational thinking to develop fact fluency within 10 and then extend those fact patterns to greater numbers.

Uses understanding of combinations to 10 to find combinations to 20.	Uses understanding of combinations to 10 to find multiple of 10 s partners to 100.	Uses understanding of combinations to 10 to find multiple of 100 s partners to 1000.	Uses understanding of combinations to $1 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}$ to add any numbers within 1000.
$\begin{gathered} 6+4=10 \\ s o \\ 16+4=20 \end{gathered}$	$\begin{gathered} 6+4=10 \\ \text { so } \\ 60+40=100 \end{gathered}$ $\begin{gathered} 56+\ldots=100 \\ 50+40=90 \\ 6+4=10 \\ 90+10=100 \\ 56+44=100 \end{gathered}$	$\begin{gathered} 560+\ldots=1000 \\ 500+400=900 \\ 60+40=100 \\ 900+100=1000 \\ 560+440=1000 \end{gathered}$	See model/strategy charts on the following pages for examples of adding and subtracting within 1000.

Use Place Value to compose, decompose and recompose

Decompose both numbers to add and subtract, decompose one number to add and subtract, recompose like units, missing addend, compensation There is an explicit connection between counting and addition (i.e. counting 10 more is the same as adding 10 , counting back 10 is the same as subtracting 10).

Models \& Strategies for Addition

Strategies

*We recommend starting with articulated number lines in Grade 2, and then connecting them to open number lines while moving from 2-digit to 3-digit computation.

Models \& Strategies for Subtraction

Strategies

Place Value: Decompose both numbers	Place Value: Decompose one number	Missing Addend	Compensation

Ten Frames are not an efficient model for 3-digit computation.
See Grade 1 Progression for examples with 2-digit numbers.

Models

Number Lines are not an appropriate model for this strategy.

*We recommend starting with articulated number lines in Grade 2, and then connecting them to open number lines while moving from 2-digit to 3-digit computation.

Multiplicative Reasoning

Grade Three HLC

Multiply and divide within 100 within context and with equations.

September

Grade Three Learning Progressions
June

Students must use models to build understanding along this trajectory and interact with a variety of contexts for multiplication and division. Models should support students' ability to unitize-understand a group or collection of items represents "one." (For example, one group of 5 consists of 5 individual items but is classified as one group.)

Counting by Equal Groups (Unitizing) to Build Multiplicative Understanding (modeling and then counting by ls or skip counting)

Operations: Multiplication and Division

Students must use models to build understanding along this trajectory and interact with a variety of contexts for multiplication and division. Models should support students developing understanding of the magnitude of digits in their place values. In Grades 7 and 2, students thought about place value as follows: $245=200+40+5$. In Grades 3 and 4, place value understanding becomes multiplicative: $245=2(700)+4(10)+5(7)$ Students also use relational thinking when composing, decomposing and recomposing

Multiplication - Composition and Decomposition

ALL LEARNERS NETWORK
$\because \bullet \bullet$
Grade Three HLC Learning Progressions
!
Properties of Multiplication These properties are investigated throughout the year with different numbers and problem situations. The sequence of how the properties appear below does not suggest the order in which to explore them. Many times the properties can be explored simultaneously with student work.)
Identity Property

Developing Multiplication Fact Strategies

Fact fluency must develop through use of models, NOT through rote memorization. Students simultaneously explore properties of multiplication through composition and decomposition which build relational thinking strategies.
*Below we show examples of how students might derive multiplication facts. These examples are not meant to prescribe certain strategies that must be used.

Division - Composition and Decomposition Students model both partitive and quotitive situations.

Shares by ones into equal sized subgroupsshares individual objects until all items are shared in groups equally (partitive division).

Uses repeated subtraction of equal size groups or sharing in larger chunks (sharing by $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}$ and 5 s) until all of the items have been removed from the total (quotitive division).

Partitive

Quotative

I have 12 cookies. Each plate

$$
\frac{12}{\text { in all }} \div 4=\begin{gathered}
\text { \# of } \\
\text { in each group }
\end{gathered}
$$

holds 4 cookies.

How many plates do I have?

Organizes groups into rows or columns based on total number of objects and the given number of rows or columns.

Students will start to use the missing factor as the answer.

I have 30 books to organize on 5 shelves. How many books are on each shelf?

$$
\begin{aligned}
& 30 \div 5= \\
& 5 \times \ldots=30
\end{aligned}
$$

How many books per shelf?

Uses the area model to determine missing side length (missing dimension) through 10×10.

Uses inverse relationship, and considers the missing factor problem for multiplication to solve a division problem.

I want to build a garden that is 24 sq. feet. One side of the garden will be 4 feet long.
How long does the other side need to be?

$24 \div 4=$ \qquad

Composing and Decomposing Using Base Ten Units and Place Value - 1s, 10s, 100s (Students must use models to build understanding along this trajectory. Models should support students developing understanding of the magnitude of digits in their place values.)

Uses place value understanding to multiply single digit times 10 . This involves extending understanding of single digit x single digit to single digit x a group of ten	Uses place value understanding to multiply a single digit by multiple of 10 . This involves extending understanding of single digit x single digit to single digit x multiple of ten	Students decompose any number through expanded notation.
3 groups of 1 $3 \times 1=3$	3 groups of 4 $3 \times 4=12$	$247=(2 \times 100)+(4 \times 10)+(7 \times 1)$
\qquad so I know... 3 groups of 10 $\begin{gathered} 3 \times 1 \text { ten }=3 \text { tens }=30 \\ 3 \times 10=30 \end{gathered}$	so I know... 3 groups of 40 $\begin{gathered} 3 \times 4 \text { tens }=12 \text { tens }=120 \\ 3 \times 40=120 \end{gathered}$	2×100 4×10
		7×1

Grade Three HLC Learning Progressions
Models and Strategies for Multiplication (Across Grades 3-4)

ALL LEARNERS NETWORK

Grade Three HLC Learning Progressions

$\bullet^{\bullet} \cdot$
Models and Strategies for Division (Across Grades 3-4)
Grade 3 |l|

Strategies

Multiplicative Reasoning

Grade Four HLC

Multiply and divide within 1000 within context and with equations.

September
 Grade Four Learning Progressions

June
Students must use models to build understanding along this trajectory and interact with a variety of contexts for multiplication and division. Models will continue to support students' ability to unitize-understand a group or collection of items represents "one." (For example, one group of 5 consists of 5 individual items but is classified as one group.)

Counting by Equal Groups (Unitizing) to Extend Multiplicative Understanding

Skip counts the equal sized groups or uses repeated addition to tell the cumulative total of each group.	Combines equal sized groups in flexible ways to begin to explore partial products.

Operations: Multiplication and Division

Students must use models to build understanding along this trajectory and interact with a variety of contexts for multiplication and division. Models should support students developing understanding of the magnitude of digits in their place values. In Grades 3 and 4, place value understanding is multiplicative: $245=2(100)+4(70)+5(7)$ Students also use relational thinking when composing, decomposing and recomposing.
**Students are maintaining and using their fact strategies to solve basic facts through 100 within context and with equations.

Multiplication - Composition and Decomposition

Students derive strategies through the use of area models, decomposition of numbers, and relational thinking with known facts.

ALL LEARNERS NETWORK
$\because \bullet \cdot$
Grade Four HLC Learning Progressions

Properties of Multiplication (These properties are investigated throughout the year with different numbers and problem situations. The sequence of how the properties appear below does not suggest the order in which to explore them. Many times the properties can be explored simultaneously with student work.)
Identity Property
-•••
Division - Composition and Decomposition (Students model both partitive and quotitive situations)

Shares equal sized portions from the total to each group using benchmark sized quantities (10, 5, 2 and then 1s) from a whole within 1,000.

AND/OR
Subtracts equal sized groups of the divisor from the total.

Uses inverse relationship, and considers the missing factor problem for multiplication to solve a division problem.

May use partial products and foundational facts to build up to the total.

Uses partial quotients, removes larger-sized products using the divisor as a factor, multiples of benchmark numbers, and multiplication facts.

$$
\begin{aligned}
& 1,440 \div 32= \\
& 32 \times _=1,440
\end{aligned}
$$

$$
?
$$

	20	20	5
32	1,440	800	160
	- 640	- 640	- 160
	800	160	0
	1,440		

$$
\left.\begin{array}{r|}
\hline 32 \begin{array}{r}
1,440 \\
\frac{-640}{800} \\
-640 \\
\hline 160 \\
-160 \\
\hline
\end{array}
\end{array}\right)+5 \times 32 \times 32
$$

Composing and Decomposing Using Base Ten Units and Place Value - 1s, 10s, 100s, 1000s (Students must use models to build understanding along this trajectory. Models should support students developing understanding of the magnitude of digits in their place values.)

Grade Four HLC Learning Progressions
Models and Strategies for Multiplication (Across Grades 3-4)

ALL LEARNERS NETWORK
Grade Four HLC Learning Progressions
$\bullet_{\bullet}^{\bullet} \cdot$
Grade Four HLC Learning Progressions
Models and Strategies for Division (Across Grades 3-4)
Grade 3
Grade $3+4$
Grade 4

Fractions

Foundational Understanding of Fractions

The 5th grade HLC progression focuses on operating with fractions. Prior to operating with fractions, students should have opportunities to compare and order fractions, reason about the relative size of fractions and develop understanding about equivalent fractions.

(see 5th grade HLC progression on the subsequent pages)

Equipartitioning Equipartitioning is directly related to multiplication factors.	Visual Representations Students need to interact with multiple visual representations of fractions.	Equivalence using Visual Representations Students need to explore equivalence through use of many different models.
Example 1: Folding paper to make eighths, first fold the whole in half. Then fold each of those pieces in half. Then fold each of those in half to have eight equal parts. This connects to $8=2 \times 2 \times 2$ as we break apart the whole in half, in half again, and again once more. Example 2: In making twelfths, first fold the whole in half. Then fold each of those pieces in half. Then fold each of those in thirds to have twelve equal parts. This connects to $12=2 \times 2 \times 3$ as we break apart the whole in half, in half again, and then in thirds.	Tape Diagram / Number Line Set Model $\frac{3}{4}$ Linear Model $\frac{5}{3}$ Number Line	$\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{4}=\frac{3}{12}$

Comparing and Ordering

There are a variety of reasoning strategies to compare/order fractions. Below are a few common strategies.

Common Numerator

$\frac{3}{6}>\frac{3}{12}$
$\frac{1}{6}$ is larger
than $\frac{1}{12}$
Comparison to $0,1 / 2,1 \ldots$ (or > $1 / 2$)

Distance from a benchmark

$$
\begin{aligned}
& 0 \quad \frac{1}{5} \\
& \frac{2}{5} \\
& \frac{3}{5} \\
& \frac{4}{5} \\
& 1
\end{aligned} \frac{4}{5}>\frac{3}{4}
$$

Grade Five HLC

Add, subtract, multiply and divide with fractions (in context and in equations) using visual representations

September

Grade Five Learning Progressions
June
Students must use models to build understanding along this trajectory and interact with a variety of contexts of adding, subtracting, multiplying and dividing fractions. ${ }^{* *}$ NO algorithms before conceptual understanding is SOLID. Introducing algorithms too early interrupts and/or has a negative impact on understanding**

Adding \& Subtracting Fractions

Students move from adding/subtracting with same denominators to adding/subtracting with different denominators.

Compose and decompose using unit fraction knowledge	Add unit fractions using the area model. Partition models into the same number of equal parts	Use area models in relation to a benchmark number	Add fractions using double number lines
Students compose $\frac{7}{8}$ by adding $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}$ has the same value as $\frac{4}{8}+\frac{3}{8}$ Linear Model Jumps on a Number Line	$\frac{1}{2}+\frac{1}{3}$ has the same value as $\frac{3}{6}+\frac{2}{6}=\frac{5}{6}$	" $\frac{7}{8}$ is $\frac{1}{8}$ away from 7 whole." $\frac{7}{8}+\frac{1}{2}=\frac{7}{8}+\frac{4}{8}=1 \frac{3}{8}$	

Multiplying Fractions

Students will interact with a whole number times unit fractions, then a whole number times a fraction less than 1 , then move to unit fractions times unit fractions and finally to all other fraction multiplication types. Students will recognize and discover the patterns that lead to the standard algorithm.

Grade Five HLC Learning Progressions

-

$\because \because \because$

Dividing Fractions

In Fth grade, fraction division focuses only on problems with a whole number and a unit fraction (unit fractions by whole numbers, whole numbers by unit fractions). Students will be exposed to all problem types; partitive, quotitive, multiplicative change, measurement conversion and rectangular area.

Multiplicative Change modeled with Rectangular Area

" 1 is $1 / 4$ of the total. Find the total."
" 1 gallon fills $1 / 4$ of the gas tank. How many gallons does the whole tank hold?"

Use visual representations to divide a whole number by a unit fraction

$$
2 \div \frac{1}{3}
$$

Quotitive

"How many groups of $1 / 3$ are there in 2?" "How many $1 / 3$ foot bracelets can I make out of 2 feet of ribbon?"

Multiplicative Change

" 2 is $1 / 3$ of the total. Find the total." " 2 feet of rope is $1 / 3$ of the total length. How long is the rope?

Use visual representations to divide a unit fraction by a whole number

$$
\frac{1}{2} \div 3
$$

Partitive

"There is $1 / 2$ of a pan of brownies to be shared equally between 3 people. Each person will get $1 / 6$ of a pan of brownies."

Measurement Conversion

"I have $1 / 2$ foot of ribbon. How many yards of ribbon do I have?"

Proportional Reasoning - Ratios

Grade Six HLC

Use visual representations to compare ratios, and solve problems including those involving unit rates and percentages
September

Grade Six Learning Progressions

Students must use visual representations to build understanding along this trajectory and interact with a variety of rates and ratios.
${ }^{* *}$ Be VERY cautious of introducing algorithms before conceptual understanding is SOLID**
Critical Strategies: Look for and identify multiplicative relationships in tables and diagrams.

Grade Six HLC Learning Progressions - DRAFT

Proportional Reasoning

Grade Seven Proportional Reasoning HLC

Recognize proportional relationships and identify the unit rate in tables, graphs, equations and in context.
September

Grade Seven (PR) Learning Progressions

Students must use visual representations to build understanding along this trajectory and interact with a variety of proportional contexts.
${ }^{* *}$ Be VERY cautious of introducing algorithms before conceptual understanding is SOLID**
Critical Strategies: Look for and identify multiplicative relationships in tables and diagrams.
(The cross products algorithm does not qualify as demonstrating understanding.)

Expressions and Equations

Grade Seven Expressions and Equations HLC

Operate with signed numbers and create equivalent expressions.
September \longrightarrow Grade Seven (EE) Learning Progressions \longrightarrow June

Students must use visual representations to build understanding along this learning progression. Algebra tiles are strongly recommended since students use tiles to model in elementary through high school mathematics. $\quad{ }^{* * B e}$ VERY cautious of introducing algorithms before conceptual understanding is SOLID**

Critical Strategies: Zero pairs are useful tools when working with signed numbers.

Understanding Integers

Possible contexts: temperature, money/debt, elevation

Models:

- Number line
(horizontal + vertical)
- 2 sided chips/Algebra tiles

Students should:

- Compare integers by thinking about their distance from zero and using $>,<,=$
- Use zero pairs

1 zero pair $1+-1=0$ 2 zero pairs $2+-2=0$

Build and Create Equivalent Expressions

Possible contexts: temperature, money/debt, elevation, area, perimeter, emotions scale

Cont. on next page

Grade Seven HLC Learning Progressions - DRAFT

(Expressions and Equations)

Expressions and Equations

Grade Eight Expressions and Equations HLC

Solve equations for unknowns which may include signed numbers.
September \longrightarrow Grade Eight (EE) Learning Progressions \longrightarrow June

Students must use visual representations to build understanding along this learning progression. Algebra tiles are strongly recommended since students use tiles to model in elementary through high school mathematics. $\quad{ }^{* * B e}$ VERY cautious of introducing algorithms before conceptual understanding is SOLID**

Critical Strategies: Use inverse operations for solving problems

Solving Equations Connecting visual representations to algebraic notation	Understanding the number and meaning of solution(s) The solution is the value(s) of x is that makes a given equation true
Other representations: Money bags, pan balance	In context of solving an equation: In this example, $3 x+3=3(x+1)$ shows that x can have any value, so x has infinitely many solutions. In this example, $3 x+3=3(x+2)$ there is no value of x that will make this true, so \times has no solution.

Linear Relationships

Grade Eight Linear Relationships HLC

Understand linear relationships using contexts, tables, graphs and equations.

Make connections among representations of linear relationships.

September
Grade Eight (LR) Learning Progressions
June
Students must use visual representations to build understanding along this trajectory and interact with a variety of linear contexts.
Be VERY cautious of introducing algorithms before conceptual understanding is SOLID
Critical Strategies: Finding the rate of change between two quantities (x and y) and the vertical intercept or initial value

