Multiplicative Reasoning

Grade Three HLC

Multiply and divide within 100 within context and with equations.

September

Grade Three Learning Progressions
June

Students must use models to build understanding along this trajectory and interact with a variety of contexts for multiplication and division. Models should support students' ability to unitize-understand a group or collection of items represents "one." (For example, one group of 5 consists of 5 individual items but is classified as one group.)

Counting by Equal Groups (Unitizing) to Build Multiplicative Understanding (modeling and then counting by ls or skip counting)

Operations: Multiplication and Division

Students must use models to build understanding along this trajectory and interact with a variety of contexts for multiplication and division. Models should support students developing understanding of the magnitude of digits in their place values. In Crades 7 and 2, students thought about place value as follows: $245=200+40+5$. In Grades 3 and 4, place value understanding becomes multiplicative: $245=2(700)+4(10)+5(7)$ Students also use relational thinking when composing, decomposing and recomposing

Multiplication - Composition and Decomposition

$\because \bullet \bullet$
Grade Three HLC Learning Progressions
-•
Properties of Multiplication These properties are investigated throughout the year with different numbers and problem situations. The sequence of how the properties appear below does not suggest the order in which to explore them. Many times the properties can be explored simultaneously with student work.)
Identity Property

Developing Multiplication Fact Strategies

Fact fluency must develop through use of models, NOT through rote memorization. Students simultaneously explore properties of multiplication through composition and decomposition which build relational thinking strategies.
*Below we show examples of how students might derive multiplication facts. These examples are not meant to prescribe certain strategies that must be used.

Division - Composition and Decomposition Students model both partitive and quotitive situations.

Shares by ones into equal sized subgroupsshares individual objects until all items are shared in groups equally (partitive division).

Uses repeated subtraction of equal size groups or sharing in larger chunks (sharing by 2s, 3s, 4s and 5 s) until all of the items have been removed from the total (quotitive division).

Partitive

Quotative

I have 12 cookies. Each plate

$$
\frac{12}{\text { in all }} \div \frac{4}{\text { in each group }}=\underset{\substack{\# \text { of } \\ \text { groups }}}{\substack{\text { and }}}
$$

holds 4 cookies.

How many plates do I have?

Organizes groups into rows or columns based on total number of objects and the given number of rows or columns.

Students will start to use the missing factor as the answer.

I have 30 books to organize on 5 shelves. How many books are on each shelf?

Uses the area model to determine missing side length (missing dimension) through 10×10.

Uses inverse relationship, and considers the missing factor problem for multiplication to solve a division problem.

I want to build a garden that is 24 sq. feet. One side of the garden will be 4 feet long.
How long does the other side need to be?

$24 \div 4=$ \qquad

Composing and Decomposing Using Base Ten Units and Place Value - 1s, 10s, 100s (Students must use models to build understanding along this trajectory. Models should support students developing understanding of the magnitude of digits in their place values.)

Uses place value understanding to multiply single digit times 10 . This involves extending understanding of single digit x single digit to single digit x a group of ten	Uses place value understanding to multiply a single digit by multiple of 10 . This involves extending understanding of single digit x single digit to single digit \times multiple of ten	Students decompose any number through expanded notation.
3 groups of 1 $3 \times 1=3$	3 groups of 4 $3 \times 4=12$	$247=(2 \times 100)+(4 \times 10)+(7 \times 1)$
so I know... 3 groups of 10 $\begin{gathered} 3 \times 1 \text { ten }=3 \text { tens }=30 \\ 3 \times 10=30 \end{gathered}$	so I know... 3 groups of 40 $\begin{gathered} 3 \times 4 \text { tens }=12 \text { tens }=120 \\ 3 \times 40=120 \end{gathered}$	2×100 4×10
		7×1

Grade Three HLC Learning Progressions
Models and Strategies for Multiplication (Across Grades 3-4)

Models and Strategies for Division (Across Grades 3-4)

Grade 3

Strategies

